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Abstract. Domain decomposition methods have been particularly developed in recent years
with the arrival of parallel computers, and currently represent a very active research direction
in numerical analysis. These methods are an essential choice for solving problems on complex
geometries, are very effective for large-scale systems, and are also used in the study of cou-
pled models such as the Stokes-Darcy problem. In this work, we present our fundings on domain
decomposition methods carried . A series of numerical tests using the FreeFem software were per-
formed and demonstrated the robustness of these methods. The second part concerns a coupled
Stokes-Darcy problem. The mathematical formulation as well as the finite element discretization
of this problem are presented.

1 Introduction
The first domain decomposition method was developed in the late 19th century by
mathematician H.A. Schwarz. The goal was to develop an analytical tool that could
extend the Dirichlet principle to more complex domains. The most famous domain in
this context is given by the union of a rectangle and a disk, as illustrated in the figure.
The Schwarz method requires an overlap between the subdomains. The disadvantage of

Fig. 1: Domaine original de Schwarz

this type of partitioning is the complexity of its numerical implementation, especially
in the case of 3D problems. Moreover, it is difficult to define the overlapping regions
for highly complex geometries. Additionally, the convergence in this case is very slow.
Non-overlapping methods are the most commonly used nowadays and are the ones we
will adopt in the following. They allow reducing the global problem to a problem on
the interface.

The rest of the work is outlined as follows: The first section presents the mathe-
matical foundation of the non-overlapping domain decomposition method applied to an
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elliptic problem on a domain Ω subdivided into two subdomains Ω1 and Ω2 separated
by an interface Γ . The variational formulation is given for both the global problem
and the subdomain problems. The finite element discretization is also presented, and
the LU factorization is used to obtain a condensed system at the interface called the
Schur complement. The algebraic version of the Schur complement, called the Steklov-
Poincaré operator, is also applied to obtain the same condensed system at the interface.
Two iterative algorithms, Dirichlet-Neumann and Neumann-Neumann, are presented for
solving the system at the interface. It is shown that these algorithms are preconditioned
Richardson methods.

In the second section, some numerical results are presented concerning the conver-
gence and error of domain decomposition methods.

The last section is devoted to the mathematical study of the coupling of a fluid flow
governed by the Stokes equation and a flow in porous media governed by the Darcy law.
The mathematical model for both the Stokes equation and the Darcy model, as well as
the interface conditions between the two zones, are presented. A variational formulation
is given, as well as the finite element discretization. Finally, a reduction of the problem
to a condensed problem at the interface is presented, which is the Schur complement
for our coupled Stokes-Darcy problem.

2 Non-overlapping domain decomposition for the Poisson
equation

The objective of this section is to study the mathematical foundations of non-overlapping
domain decomposition methods. We mainly consider the elliptic boundary problem of
Poisson.

Let Ω be a domain in Rd (where d = 2, 3) with a continuous and Lipschitz boundary
∂Ω. Suppose that Ω is divided into two subdomains Ω1 and Ω2 with an interface Γ ,
such that Ω̄ = Ω1 ∪Ω2, Ω1 ∩ Ω2 = ∅, and Γ = ∂Ω1 ∩ ∂Ω2. Figure 2 illustrates a
rectangular domain Ω divided into two subdomains.

Fig. 2: Décomposition en deux sous-domaines
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For a heterogeneous medium, we consider the following elliptic problem:{
−∇(µ∇u) = f, dans Ω,
u = 0, sur ∂Ω.

(1)

such that µ ∈ L∞(Ω), inf
Ω
µ > 0 et f ∈ L2(Ω).

The function µ is given by :

µ(x) =
{
µ1(x), dans Ω1,
µ2(x), dans Ω2,

with µi ∈ L∞(Ωi) i=1,2.
To simplify, the theoretical results will be presented for the case µ = 1, which

corresponds to the following Poisson problem:{
−∆u = f, dans Ω,
u = 0, sur ∂Ω

(2)

The results obtained for the Poisson problem (2) remain valid for the heterogeneous
problem (1) and vice versa.

We consider the following local problems:{
−∆u1 = f1, dans Ω1,
u1 = 0, sur ∂Ω1\Γ

(3)

{
−∆u2 = f2, dans Ω2,
u2 = 0, sur ∂Ω2\Γ

(4)

où f1 = f|Ω1 et f2 = f|Ω2

with the following boundary conditions:

– Condition of admissibility in the interface

u1 = u2 sur Γ. (5)

– Equilibrium condition
∂u1

∂n1
= −∂u2

∂n2
sur Γ. (6)

with ui = u|Ωi
, i = 1, 2 is the restriction of u on Ωi et ni is the outward normal of the

domain Ωi. The domain decomposition methods consist of reformulating the problem
under study into an equivalent problem whose unknowns are functions defined on the
interface of the subdomains. The Schur complement methods (primal and dual) will be
studied for the problem (2)-(6). The Steklov-Poincaré operator, which is an algebraic
version of the Schur complement, will also be presented.
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3 Weak formulation

In this section, we provide the weak form of the global problem and local problems.
We then show that these problems are well-posed, have unique solutions, and that
solving the global problem is equivalent to solving the two local problems with the
two interface conditions. For the variational formulation of the global problem, we
consider the following Hilbert spaces: H1(Ω) :={v ∈ L2(Ω)⧸Dj v ∈ L2(Ω) ,j = 0, ...d}
et H1

0 (Ω) := {v ∈ H1(Ω)⧸v|∂Ω = 0} . The space H1(Ω) has the following norm
∥ v ∥H1 := (∥ v ∥2

L2 + ∥ ∇v ∥2
L2) 1

2 with ∥ v ∥L2 := (v, v) 1
2 et (u, v) =

∫
Ω uvdx.

Let us denote: V := H1
0 (Ω). Let u be a fairly regular solution of (2) and v ∈ V .

Multiplying the first equation of (2) by v and integrating over Ω we obtain:

intΩ − (∆u)vdx =
∫
Ω
fvdx.

By the formula of Green we will have then,

intΩ∇u.∇vdx−
∫
∂Ω
∂nuvdσ =

∫
Ω
fvdx.

Now v = 0 on the edge, the term int∂Ω∂nuvdσ cancels out, so we get the following weak
form:

trouver u ∈ V a(u, v) = (f, v) v ∈ V (7)

with (f, v) =
∫
Ω fvdx et a(u, v) :=

∫
Ω ∇u · ∇v

Theorem 3.1. The problem (7) admits a unique solution.

The proof can be done through the Lax-Milligram theorem and the Poincaré in-
equality (For more details, we can refer to [5]).

3.1 Variational formulation of local problems : Trace operator and
extension operator

The trace space of H1(Ω) on the edge ∂Ω is denoted H1/2(∂Ω). For a non empty open
Σ ⊂ ∂Ω the trace space will be denoted H1/2(Σ). The trace operator

γ0 : H1(Ω) −→ H1/2(∂Ω)

v 7−→ γ0(v) = v|partialΩ

is surjective and continuous and we have the following trace inequality: There exists a
constant CΩ > 0 such that

∥ v|∂Ω
∥H1/2(∂Ω)≤ CΩ||v||H1(Ω) ∀v ∈ H1(Ω)
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Let us consider, Λ := {η ∈ H1/2(Γ )⧸η = v|Γ pour v ∈ V }. The space Λ has
the norm ∥ η ∥Λ:= inf

v∈Vi,v|Γ =η
∥ v ∥H1(Ωi). Let the follosing Hilbert spaces Vi := {vi ∈

H1(Ωi)⧸vi|∂Ω∩∂Ωi
= 0} i=1,2. The trace operator

γi : Vi −→ Λ

is continuous with respect to the norm parallel. ∥Λ, hence the trace inequality follows:

∃C∗
i telle que : ∥ vi|Γ ∥Λ≤ C∗

i ∥ vi ∥H1(Ωi) vi ∈ Vi

We note by ℜi(i = 1, 2) the following extension operator:

ℜi : Λ −→ Vi

η 7−→ ℜiη

with (ℜiη)|Γ = η. This operator is continuous and is not unique.

Equivalence between the global problem and the local problems Let us con-
sider: ai(ui, vi) := (∇ui,∇vi)Ωi

i=1,2, and V 0
i := {vi ∈ Vi/vi|Γ = 0} = H1

0 (Ωi) i=1,2.
The following lemma shows the equivalence between the weak form of the global prob-
lem and the local problems.

Lemma 3.2. The fish problem (2) is equivalent to:
Find u1 = u|Ω1

et u2 = u|Ω2
, such that :

(FV P )


a1(u1, v1) = (f1, v1), v1 ∈ V 0

1 ,
u1 = u2, sur Γ
a2(u2, v2) = (f2, v2), v2 ∈ V 0

1 ,
a2(u2,ℜ2η) = (f2,ℜ2η)Ω2 + (f1,ℜ1η)Ω1 − a1(u1,ℜ1η), ∀η ∈ Λ

Proof. Let u be the solution of (7). We have ui = u|Ωi ∈ Vi and the first three equations
of (FVP) are satisfied. Moreover, for each η ∈ Λ, we can define the extension operator
ℜ by:

ℜ : Λ −→ V

η 7−→ ℜη
with

ℜη :=
{

ℜ1η, sur Ω1,
ℜ2η, sur Ω2

Thus we have a(u,ℜη) = (f,ℜη), so ∑
i = 12ai(ui,ℜiη) = ∑2

i=1(fi,ℜiη)Ω, and therefore
the last equation is satisfied.
Conversely, if u1 and u2 are solutions of (FVP), let:

u =
{
u1, sur Ω1,
u2, sur Ω2
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It is clear that u ∈ V . For each v ∈ V , we have η := v|Γ ∈ Λ, and by definition of
ℜη, we have (v|Ωi − ℜiη) ∈ V 0

i . Using equations 1, 3, and 4 of (FVP), we have:

a(u, v) =
2∑
i=1

[ai(ui, v|Ωi
− ℜiη) + ai(ui,ℜiη)]

=
2∑
i=1

[(f, v|
Ωi

− ℜiη)
Ωi

+ (f,ℜiη)
Ωi

]

= (f, v) ∀v ∈ V.

Therefore, u is a solution of (7).

4 Discretization by Finite Element Method

We will give a finite element discretization of the (FVP) problem. For this, we consider
a regular triangulation T h of the domain Ω : Ω = ⋃

K ∈ ThK, where each K ∈ Th is a
non-empty interior triangle with K̊1 ∩K̊2 = ∅ for all K1, K2 ∈ T h, and if e = K1 ∩K2 ̸=
∅, then e is a face, edge, or vertex shared by K1 and K2. We consider the space

Xh(Ω) := vh ∈ C0(Ω)/vh|K ∈ P1(K) ∀K ∈ Th,

where P1(K) is the space of polynomials on the element K of degree less than or equal
to 1, and the space

Vh = vh ∈ Xh(Ω)/ vh|∂Ω = 0 = Xh(Ω) ∩ H1
0(Ω),

where H1
0(Ω) is the Sobolev space of functions in H1(Ω) with zero trace on the boundary

∂Ω.
We denote F (v) = (f, v), and therefore the problem (7) becomes:

trouver uh ∈ Vh : a(uh, vh) = F (v). (8)

Let φjNj=1 be a basis for the space Vh. Suppose that the interface Γ = Ω1 ∩ Ω2 is a
union of edges or faces of the triangulation T h. We introduce the following partition
of the nodes in the domain: let x1

j , 1 ≤ j ≤ N1 be the nodes in the subdomain Ω1, let
x2
j , 1 ≤ j ≤ N2 be the nodes in the subdomain Ω2, and let xΓj , 1 ≤ j ≤ NΓ be the nodes

on the interface Γ . We also partition the basis functions by denoting φij the functions
associated with nodes xij (i = 1, 2 j = 1, ...Ni) and φΓj the functions associated with
nodes xΓj on the interface.

We take the φαj (α = 1, 2 or Γ ) as test functions in the problem (8), and thus we
have the following problem:
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Find uh ∈ Vh such that:
a(uh, φ1

j) = F (φ1
j), ∀j = 1...., N1,

a(uh, φ2
j) = F (φ2

j), ∀j = 1...., N2,
a(uh, φΓj ) = F (φΓj ), ∀j = 1...., NΓ ,

(9)

Let ai(., .) and Fi(.) be the restrictions of the form a(., .) and F (.) to the subdomain
Ωi, i=1,2. We consider the space Vi,h of polynomial functions of degree less than or
equal to 1, which vanish on the boundary ∂Ωi except for the interface Γ , and the space
V 0
i,h := vh ∈ Vi,h/vh|Γ = 0. Let uih = uh|Ωi ∈ Vi,h, then the problem (9) can be written

in the following multi-domain formulation:
a1(u1

h, φ
1
k) = F1(φ1

k), ∀k = 1...., N1,
a2(u2

h, φ
2
k) = F2(φ2

k), ∀k = 1...., N2,
a1(u1

h, φ
Γ
k |Ω1) + a2(u2

h, φ
Γ
k |Ω2) = F1(φΓk |Ω1) + F2(φΓk |Ω2), ∀k = 1...., NΓ ,

(10)

We decompose the function uh on the basis {varphij} of the space Vh, we have :

uh(x) =
N1∑
j=1

(u1
jφ

1
j(x)) +

N2∑
j=1

(u2
jφ

2
j(x)) +

NΓ∑
j=1

(uΓj φΓj (x)). (11)

where uαj := uh(xαj )(j = 1, ..., Nα, α = 1, 2, Γ ) are the coefficients of the linear combi-
nation representing uh in the {φj} basis. In the same way, we also obtain :

uih(x) =
Ni∑
j=1

(uijφij(x)) +
NΓ∑
j=1

(uΓj φΓj|Ωi
(x)). (12)

where φΓj|Ωi
is the restriction of φΓj on Ωi.

By substituting (12) in the first two equations of (10), we find

N1∑
j=1

u1
ja1(φ1

j(x), φ1
k(x)) +

NΓ∑
j=1

uΓj a1(φΓj|Ω1
(x), φ1

k(x)) = F (φ1
k(x)) (13)

and
N2∑
j=1

u1
ja2(φ2

j(x), φ2
k(x)) +

NΓ∑
j=1

uΓj a2(φΓj|Ω2
, φ2

k(x)) = F (φ2
k(x)) (14)

Let define the following matrix

(Aii)kj = ai(φij, φik), i = 1, 2

(AiΓ )kj = ai(φΓj|Ωi
, φik), i = 1, 2

(AΓi)kj = ai(φij, φΓk|Ωi
), i = 1, 2
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(AiΓΓ )kj = ai(φΓj|Ωi
, φΓk|Ωi

), i = 1, 2

(bi)k = Fi(φik), i = 1, 2

(bΓi )k = Fi(φΓk|Ωi
), i = 1, 2

The system (10) can therefore be written as :

A11u1 + A1ΓuΓ

= b1,
A22u2 + A2ΓuΓ

= b2,
AΓ1u1 + AΓ2u2 + (A1

ΓΓ + A2
ΓΓ )u

Γ
= bΓ1 + bΓ2 ,

(15)

où u1 = (u1
j)j=1...N1 , u2 = (u2

j)j=1...N2 , u
Γ

= (uΓj )j=1...NΓ
, b1 = (bj)j=1...N1 , b2 =

(bj)j=1...N2 , bΓ1 = (bΓ1j)j=1...N1 , bΓ2 = (bΓ2j)j=1...N2 Then we have the system in the fol-
lowing matrix form: A11 0 A1Γ

0 A22 A2Γ
AΓ1 AΓ2 AΓΓ


 u1
u2
u

Γ

 =

 b1
b2
bΓ

 (16)

with AΓΓ = A1
ΓΓ + A2

ΓΓ et bΓ = b1
Γ + b2

Γ .

5 Method of primal Schur’s complement

The system (16) can be written in the following form:
{
Aiiui + AiΓuΓ

= bi, i = 1, 2
AΓ1u1 + AΓ2u2 + (A1

ΓΓ + A2
ΓΓ )u

Γ
= bΓ ,

(17)

It is assumed that the blocks Aii admit a factorization LU , the first two equations
of the system (17) then becomes :

ui = A−1
ii (bi − AiΓuΓ ) i = 1, 2 (18)

We replace ui, i = 1, 2 in the third equation, so we have the condensed system at
the interface

SΓΓuΓ = CΓ (19)

with SΓΓ = AΓΓ −AΓ1A
−1
11 A1Γ −AΓ2A

−1
22 A2Γ Schur’s complement to the unknowns on

Γ , and CΓ = (b(1)
1 − AΓ1A

−1
11 b1) + (b(2)

Γ − AΓ2A
−1
22 b2) = C

(1)
Γ + C

(2)
Γ .

The solution of the system (19) can be done by an iterative method. The corre-
sponding SΓ matrix has a better conditioning compared to the starting matrix A, and
thus allows a better convergence speed (see [1] page 98).
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6 Steklov-Poincaré operator

Let η := u|Γ be the restriction of the solution u of (2) on Γ . Consider the following
Dirichlet problem: 

−∆(wi) = f, dans Ωi,
wi = 0, sur ∂Ωi|Γ , i = 1, 2
wi = η, sur Γ

(20)

The solution wi of (20) can be written as

wi = u0
i + u∗

i . (21)

The solution wi of (20) can be written in the following form where u0
i and u∗

i are the
solutions of the following Dirichlet problems:

−∆(u0
i ) = 0, dans Ωi,

u0
i = 0, sur ∂Ωi|Γ , i = 1, 2
u0
i = η, sur Γ

(22)

and 
−∆(u∗

i ) = f, dans Ωi,
u0
i = 0, sur ∂Ωi|Γ , i = 1, 2
u0
i = 0, sur Γ

(23)

The solution u0
i of (22) is called the harmonic extension of η to Ωi and will be

denoted Hiη, while the solution u∗
i of (23) will be denoted Gif and will be called the

resolvent operator. We have then

wi = Hiη +Gif. (24)

Remark 6.1. Gif depends only on f, while Hiη depends only on the value of the solution
u on Γ .
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The solution wi of (24) is equal to ui if and only if we have the condition frac∂w1∂n =
∂w2
∂n

on Γ , where n is the normal on Γ (n = n1 = −n2). And since we have ∂u1
∂n

=
∂u2
∂n

, then we will have (∂H1η+∂G1f
∂n

) = (∂H2η+∂G2f
∂n

) therefore

(∂H1 − ∂H2

∂n
)η = (∂G2f − ∂G1f

∂n
) (25)

Let χ be the function defined as follows:

χ = ∂G2f

∂n
− ∂G1f

∂n

= −∂G2f

∂n2
− ∂G1f

∂n1

= −
2∑
i=1

(∂Gif

∂ni
)

This function depends only on f and the normal on Γ . Soit S l’opérateur de Steklov-
Poincaré définit par :

Sη = ∂H1η

∂n1
− ∂H2η

∂n2

=
2∑
i=1

(∂Hiη

∂ni
)

= S1 + S2.

The equation (25) then becomes the Steklov-Poincaré equation on the following Γ
interface:

Sη = χ sur Γ. (26)

7 Iterative methods for domain decomposition:
Dirichlet-Neumann algorithm

The Dirichelt-Neumann method consists in solving a Dirichlet problem in the first
domain, with a Dirichlet data λk on Γ , and then solving a mixed Dirichlet-Neumann
problem on the second domain where we use the value of the flux of the previous solution
on Γ as a Neumann condition, and a homogeneous condition on the remainder of the
domain edge. The algorithm for the heterogeneous problem (1) is given as follows: • λ0

given
• for each iteration k ⪰ 0

– solve 
−∇(µ1∇uk+1

1 ) = f, dans Ω1,
uk+1

1 = 0, sur ∂Ω1|Γ ,
uk+1

1 = λk, sur Γ
(27)
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– solve : 
−∇(µ2∇uk+1

2 ) = f, dans Ω2,
uk+1

2 = 0, sur ∂Ω2|Γ ,
µ2

∂uk+1
2
∂n

= µ1
∂uk+1

1
∂n

, sur Γ

(28)

– update λk+1:
λk+1 = θuk+1

2 + (1 − θ)λk. (29)

où θ is a relaxation parameter to accelerate the convergence.

• Stop criterion:
∥λk+1 − λk∥ ≤ ϵ, avec ϵ une tolérance donnée.
The following theorem shows that the Dirichlet-Neumann method is nothing else

than the preconditioned Richardson method.

Theorem 7.1. The Dirichlet-Neumann method is equivalent to the preconditioned
Richardson method with preconditioner S2 applied to the Steklov-Poincaré interface
equation Sλ = χ i.e. we have :

λk+1 = λk + θS−1
2 (χ− Sλk).

7.1 Neumann-Neumann Algorithm

For Neumann-Neumann we first solve a Dirichlet problem in each subdomain with
Dirichlet data λk on Γ , then two Neumann problems where we use the difference of the
fluxes of the previous solutions as Neumann data on Γ . We have the following algorithm
to solve the heterogeneous problem (1): • λ0 donnée sur Γ .

• for each k ⪰ 0,

– Pour i=1,2 solve : 
−∇(µi∇uk+1

i ) = f, dans Ωi,
uk+1
i = 0, sur ∂Ωi|Γ ,
uk+1
i = λk, sur Γ

(30)

– For i=1,2 solve : 
−∇(µi∇ψk+1

i ) = 0, dans Ωi,
ψk+1
i = 0, sur ∂Ωi|Γ ,

µi
∂ψk+1

i

∂n
= µ1

∂uk+1
1
∂n

− µ2
∂uk+1

2
∂n

, sur Γ

(31)

– mettre à jour λk+1 :
λk+1 = λk − θ(σ1ψ

k+1
1|Γ − σ2ψ

k+1
2|Γ ). (32)

• Stop criterion :
∥λk+1 − λk∥ ≤ ϵ, avec ϵ une tolérance donnée.
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The parameter θ is a relaxation parameter to speed up the convergence. The positive
weights σ1 and σ2 allow to weight the contributions of the flows following the Ω1 and
Ω2 domains to attenuate the effects of the jumps of the diffusion functions µ1 and µ2
for example. In general we will take σ1 + σ2 = 1 and in the case of constant diffusion
coefficients by subdomain, we take σi = µi

µ1+µ2
.

Theorem 7.2. The Neumann-Neumann method is equivalent to the preconditioned
Richardson method with preconditioner N := (σ1S

−1
1 +σ2S

−1
2 )−1 applied to the Steklov-

Poincaré interface equation Sλ = χ c’est à dire qu’on a :

λk+1 = λk + θ(σ1S
−1
1 + σ2S

−1
2 )(χ− Sλk)

8 Numerical results: Diffusion problem

FreeFem++ is a free software originally developed by Frédéric Hecht, researcher at the
Jacques-Louis Lions Laboratory of the Pierre et Marie Curie University in Paris. It
allows to numerically solve Partial Differential Equations (PDE) by the Finite Element
Method (FEM). The FreeFEM++ language allows to quickly specify (2D, 3D) PDEs,
to manipulate several (2D, 3D) meshes and to write scripts in C++ to define numerical
algorithms for problems: nonlinear, coupled...

FreeFEM++ allows to create meshes of the studied domains. Figures (3) and (4)
show examples of meshes (uniform and non-uniform) created by FreeFEM.

Fig. 3: Maillage uniforme
sous FreeFEM

Fig. 4: Maillage non-uniforme sous
FreeFEM

We consider the following domain Ω = [0, 1] × [0, 1], we fix the number of nodes
on each interface of this domain to 5 nodes, then we generate a uniform mesh on the
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whole domain. The problem to solve on all Ω is the following:{
−∆u = 1, dans Ω,
u = 0, sur ∂Ω.

(33)

The graph (5) representing the solution on the whole domain Ω.

Fig. 5: Solution sur tout le domaine Ω.

We decompose the domain Ω in two subdomains Ω1 and Ω2, we solve the problem
(33) on each subdomain using one of the Dirichlet-Neumann or Neumann-Neumann
algorithms, the figure (??) represents the approximate solution on Ω1, while the figure
(??) represents that on Ω2.

Fig. 6: Solution sur Ω1
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Fig. 7: Solution sur Ω2

Let u1 be the solution on the first domain Ω1, and u2 that on the second domain
Ω2, we characterize the stopping criterion as follows:

– We set a tolerance ϵ.
– We initialize the error by 0 (ER0=0).
– At each iteration, the following relative error is calculated:

ER1 =
||u1 − u2||2L2

||u1||2L2

. (34)

• Case 1 :
Si |ER1 −ER0| > ϵ , we continue, and we reset the calculated error : ER0 = ER1.
• Case 2 :
Si |ER1 − ER0| ≤ ϵ, we stop the loop.

For the Poisson equation, both Dirichlet-Neumann and Neumann-Neumann algo-
rithms converge in one iteration.

Let Ω = [0, 1] × [0, 1] and{
−∆u = sin(πx)sin(πy), dans Ω,
u = 0, sur ∂Ω.

(35)

The analytical solution of the problem (??) is of the form :

u(x, y) = 1
2π2 sin(πx)sin(πy). (36)

We are going to make a comparison between the values taken on the Γ interface between
the two domains Ω1 and Ω2 by this analytical solution, by the solution without domain
decomposition and the solution with domain decomposition. We fix y =0.5 then we vary
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x and we recover the values of u(x, 0.5), of the solution without domain decomposition
and those with domain decomposition.

Error calculation:
The following graph illustrates the errors ∥u

ADDM
−uexact∥L2 , and ∥u

SDDM
−uexact∥L2 ,

where u
ADDM

represents the approximate solution obtained with domain decomposition,
u

SDDM
the approximate solution recovered without domain decomposition, and uexact

the exact solution given in (??). We always use the criterion (34) as a stopping criterion.

Fig. 8: Error comparison on the interface with the NN algorithm.

The green curve represents the computed error between the analytical solution and
the approximated solution without domain decomposition, while the brown curve rep-
resents the error between the analytical solution and the approximated solution with
domain decomposition. The two curves are not identical, because of the errors between
the approximated solution without domain decomposition and the one with domain
decomposition on the (y = 0.5) interface.

8.1 Influence of the jumps of the coefficients for a heterogeneous problem

We are interested in the problem:{
−∇(µ∇u) = 1, dans Ω = [0, 1] × [0, 1],
u = 0, sur ∂Ω

(37)

with
µ(x) =

{
µ1, dans Ω1,
µ2, dans Ω2,

(38)

For each value of (µ1, µ2), we refine the mesh (we vary the value of n), and we recover
the number of iterations needed for the convergence using the stopping criterion (34).
Remark 8.1. The error computed above is done on the interface (y=0.5), while the
solution on the interface is recovered in a different way according to the choice of the
algorithm.
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The table (1) presents the results for the two algorithms Dirichlet-Neuamnn and
Neumann-Neumann.

(µ1, µ2) (1,5) (1, 10−4) (10−4,10−5)

n 10 20 40 80 10 20 40 80 10 20 40 80

Nbre d’itérations DN 1 1 1 1 12 12 12 12 14 14 14 14

Nbre d’itérations NN 1 1 1 1 22 22 22 22 23 23 23 23

Table 1: Results for the Dirichlet-Neumann algorithm and for the Neumann-Neumann
algorithm.

Remark 8.2. In the case of two domains Ω1 and Ω2 of the same size, we see that the
number of iterations increases with the jump size of the coefficients.

Even though the Dirichlet-Neumann(DN) algorithm converges in a smaller num-
ber of iterations than the Neumann-Neumann(NN) algorithm, the error calculation
|u

SDDM
− u

ADDM
∥

mathbbL2 with the stopping criterion (34), shows that the Neumann-
Neumann algorithm gives a good approximation than Dirichlet-Neumann. The table
(??) presents the results obtained for different meshes.

Taille du maillage (n) 10 20 40 80
ERREUR-DN 0,0439327 0,0251683 0,0130351 0,00657722
ERREUR-NN 0,000623169 0,000234582 8,43998E-005 2,99788E-005

Table 2: Error calculation for different meshes.

It is clear that the error of both algorithms improves while refining the mesh.

9 Conclusion

Domain decomposition methods are numerical methods well adapted to parallel solv-
ing of partial differential equations. They are not an alternative but an essential choice
for solving large, coupled or geometrically complex problems. These methods are more
efficient than an iterative method applied to the global problem, because they combine
direct methods and an iterative method to solve an interface problem, better condi-
tioned than the global problem.

The study made on this work has treated the domain decomposition methods with-
out overlap. The mathematical foundations of domain decomposition methods applied
to the Poisson equation were studied, then the study was extended to a heterogeneous
problem. The two algorithms Dirichlet-Neumann and Neumann-Neumann were pre-
sented to solve these systems, and to illustrate the importance of these methods as
preconditioning methods. The discretization of the problem has been done by finite
elements, and the numerical implementation has been done on the FreeFem software.
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Numerical results concerning the convergence speed and the error estimation are pre-
sented in the numerical part.
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